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Abstract

We propose a coupling interface method (CIM) under Cartesian grid for solving elliptic complex interface problems in
arbitrary dimensions, where the coefficients, the source terms, and the solutions may be discontinuous or singular across
the interfaces. It consists of a first-order version (CIM1) and a second-order version (CIM2).

In one dimension, the CIM1 is derived from a linear approximation on both sides of the interface. The method is
extended to high dimensions through a dimension-by-dimension approach. To connect information from each dimension,
a coupled equation for the first-order derivatives is derived through the jump conditions in each coordinate direction. The
resulting stencil uses the standard 5 grid points in two dimensions and 7 grid points in three dimensions. Similarly, the
CIM2 is derived from a quadratic approximation in each dimension. In high dimensions, a coupled equation for the prin-
cipal second-order derivatives uxk xk is derived through the jump conditions in each coordinate direction. The cross deriv-
atives are approximated by one-side interpolation. This approach reduces the number of grid points needed for one-side
interpolation. The resulting stencil involves 8 grid points in two dimensions and 12–14 grid points in three dimensions.

A numerical study for the condition number of the resulting linear system of the CIM2 in one dimension has been per-
formed. It is shown that the condition number has the same behavior as that of the discrete Laplacian, independent of the
relative location of the interface in a grid cell. Further, we also give a proof of the solvability of the coupling equations,
provided the curvature j of the interface satisfies jh 6 Const, where h is the mesh size.

The CIM1 requires that the interface intersects each grid segment (the segment connecting two adjacent grid points) at
most once. This is a very mild restriction and is always achievable by refining meshes. The CIM2 requires basically that the
interface does not intersect two adjacent grid segments simultaneously. In practice, we classify the underlying Cartesian
grid points into interiors, normal on-fronts, and exceptionals, where a standard central finite difference method, the
CIM2, and the CIM1 are adopted, respectively. This hybrid CIM maintains second-order accuracy in most applications
due to the fact that usually in d dimensions, the number of normal on-front grid points is O(h1�d) and the number of the
exceptional points is O(1).

Numerical convergence tests for the CIM1 and CIM2 are performed. A comparison study with other interface methods
is also reported. Algebraic multigrid method is employed to solve the resulting linear system. Numerical tests demonstrate
that CIM1 and CIM2 are respectively first order and second order in the maximal norm with less error as compared with
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other methods. In addition, this hybrid CIM passes many tests of complex interface problems in two and three dimensions.
Therefore, we believe that it is a competitive method for complex interface problems.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Interface problems are those physical problems whose solutions are composed of several components sep-
arated by interfaces. These interfaces could be material interfaces, phase boundaries, flame fronts, physical
boundaries, etc. Sometimes, they may dynamically move. The interface problems appear in fluid dynamics,
solid mechanics, electrodynamics, material science, biochemistry, etc. Among these applications, a fundamen-
tal problem is the following elliptic interface problem:
�r � ðeðxÞruðxÞÞ ¼ f ðxÞ; x 2 X n C; ð1Þ
½u� ¼ s; ½eun� ¼ r on C; ð2Þ
with the boundary condition
u ¼ g on oX: ð3Þ

Here, the coefficient e(x) is assumed to be discontinuous across the interface C, the notation [u] stands for the
jump of u across the interface, and un represents the outer normal derivative of u.

In the application of electrostatics, u is the potential, e is the dielectric coefficient, and f is the charge density.
In biochemistry, a typical problem is to find the electric potential for a macromolecule immersed in an ionic
solvent (e.g. water). The dielectric coefficient is about 2 inside the macromolecule and about 80 in water region
[16,17,34]. In material science, the dielectric coefficients are about 1 for air and 12–13 for silicon. The jump
conditions usually come from some balance laws across interfaces. For instance, [u] represents the potential
difference across a cell membrane, or the pressure difference in an immiscible two-phase flow; and [eun] is
the surface charge in electrostatics. Sometimes, they are equivalent to some singular source terms, like those
in fluid-solid interaction, see review articles [7,29].

A closely related problem is the elliptic irregular domain problem [12,13,15,21,39,40], where one embeds an
irregular domain into a larger regular domain and treats the original boundary conditions as internal jump
conditions.

In these applications, it is important to have an accurate numerical method for both u, the potential, and its
gradient, the electric field (or the velocity in fluid problems). The studies of these interface problems have a
long history. For body-fitting approaches, we refer readers to [34,48]. For finite element approaches, we refer
readers to [6,14,18,32] and references therein.

This paper is concerned with finite difference approaches under structured grids. Such approaches enjoy
simplicity and are popular for many practical problems, especially for those with moving interfaces. There
are several approaches in this direction. We classify them into three: regularization, dimension un-splitting
and dimension splitting approaches.

1.1. Regularization approach

Regularization approach is a smoothing technique applied to the coefficients and singular sources plus a
post-processing (if needed). The smoothing by harmonic averaging [4,43,44] for the coefficient e(x) can achieve
second-order accuracy in one dimension, but drops down to low-order accuracy in high dimensions
[4,29,43,45]. It was shown that smoothing technique for coefficients cannot go beyond first-order accuracy
[45]. For smooth coefficient cases, the celebrated immersed boundary method [7,41] regularizes the Dirac
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source term by moment method. High-order methods can be derived for singular sources based on high-order
moment methods [46], provided there is no discontinuity in the coefficient e(x).

1.2. Dimension un-splitting approach

These finite difference methods are derived from local Taylor expansion in multi-dimensions. The immersed
interface method (IIM) proposed by LeVeque and Li [26] is a second-order method in this class. It requires
quadratic approximation on both sides of the interface and a second-order match of jump conditions on
the interface. For the latter, IIM obtains full second-order jump conditions by differentiating the prescribed
jump conditions along tangential direction up to second order at just one interface point plus the difference
of the original second-order equations on the two sides. In two dimensions, its stencil involves six grid points.
This is the least number of grid points needed for a second-order scheme for interface problems. However, it is
found that the resulting linear system may not be stable as employed by some iterative linear solvers [3,30].

An attempt to determine which grid point should be used in addition to the standard five-point stencil for
stability consideration for the Neumann problems on irregular domain was proposed by Fogelson and Kenner
[11]. Alternatively, a maximum principle preserving immersed interface method (MIIM) [30] was proposed
which enforces the resulting coefficient matrix to be an M-matrix. Its stencil involves all 3d neighboring grid
points in d dimensions. The coefficients of the finite difference schemes are found by solving a constrained opti-
mization in 3d dimensions. This scheme enjoys stability and second-order accuracy. Moreover, it is compact,
has less grid orientation effect, and has good convergence performance by geometric multigrid and algebraic
multigrid (AMG) [1–3]. But the scheme involves solving 3d coefficient equations for each grid point near the
interface.

On the other hand, for speed consideration, Li also proposed a fast iterative immersed interface method
(FIIM) [28] for elliptic interface problems with piecewise constant coefficients. The method preconditions
Eq. (1) before applying IIM in order to take advantage of the standard fast Poisson solver. To do so, an aux-
iliary unknown (the jump [un]) and a corresponding interpolation equation are introduced via a weighted least
square approach. The GMRES is employed to solve the corresponding Schur complement system. The com-
putational time is essentially linear in the number of unknowns from numerical experiments. For other
improvements and applications of IIM, please see the references [8,9,19,20,22–25,27,28,31,33,35,47,51,52].

1.3. Dimension splitting approach

These finite difference methods are derived from Taylor expansions in each dimension. The jump conditions
are realized at some nearby interface points or at the intersections of the coordinate axes and the interface.
This approach was originally designed for solving elliptic irregular domain problems [38]. In this case, many
high-order accurate methods were available [12,13,21,39,40]. The ghost fluid method (GFM) [10] introduced
by Fedkiw et al. falls into this dimension splitting approach for hyperbolic interface problems. One main idea
there is to smoothly extend the function across over the other side of the interface. It was extended to solve
elliptic interface problems by Liu et al. [36]. In [36], only three grid points are used in each dimension. In high
dimensions, the jump data ½euxk � in each coordinate direction are projected onto the normal direction [eun] and
tangential direction [eut]. The tangential part is neglected in their method (see formulas (75), (76) of [36]). One
may suspect that such GFM can result in zeroth-order accuracy in the maximum norm from the negligence of
[eut]. But in practice, it is found that GFM reaches first-order. Indeed, a convergence proof for GFM is pro-
vided by Liu and Sideris [37]. In Appendix A, we demonstrate by an interesting numerical example that the
truncated error can grow like O(1/h) yet the true error does converge like O(h).

Three higher-order GFMs have been proposed for solving elliptic irregular domain problems [13,50,12].
They are second-order with symmetric coefficients [13], second-order for complex interface problems[50],
and fourth-order method [12], respectively. For elliptic interface problems, a high-order method which com-
bines the merits of GFM and FIIM is the explicit-jump immersed interface method (EJIIM) [49], where the
auxiliary unknowns are the high-order jumps at the intersections of the interface and the coordinate direc-
tions. The interpolation equation for these high-order jumps is derived via a local polynomial on one side
and the jump data.
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Another high-order method for elliptic interface problems is the decomposed immersed interface method
(DIIM) proposed by Berthelsen [5]. The main idea is to decompose the jump data into coordinate directions.
The method uses the standard central finite difference scheme for the left-hand side and put all correction
terms from jumps to the right-hand side, where high-order one-side interpolation is used on both sides of
the interface. The advantage is that the left-hand side is easily to invert. The right-hand side needs a successive
correction. However, due to the fact that the right-hand side is not small, a small parameter for the successive
under-relaxation is required to reach convergence and thus the convergence is slow.

Another high-order approach in this direction is the matched interface and boundary method (MIB) pro-
posed by Zhou et al. [53]. In each dimension, a high-order finite difference equation using grid data and jump
data is derived through the help of fictitious points. In multi dimensions, the jump data ½euxk � in each coordi-
nate direction is expressed in terms of [eun] and [eut]. The former is the prescribed datum. The latter is obtained
by a combination of the prescribed [ut] and one-side interpolation of nearby grid values. Since this one-side
interpolation has to be second-order and would involve many grid points on one-side, it is limited to simple
interfaces.

1.4. Present approach: coupling interface method

In the present work, we also take a dimension splitting approach as those of GFM [36,13,50,12], EJIIM [49]
and MIB [53]. The new part of our approach is to derive a coupling equation for the principal derivatives to
avoid unnecessary one-side interpolation. Our method consists of a first-order version (CIM1) and a second-
order version (CIM2).

In one dimension, the CIM1 is derived from a linear approximation on both sides of the interface. The
method is extended to high dimensions through a dimension-by-dimension approach. To connect information
from each dimension, a coupled equation for the first-order partial derivatives is derived by realizing the jump
conditions at the intersections of the interface and the grid segments, where the coupling is done through the
expression of the one-side tangential derivative ut in terms of the first-order partial derivatives. The resulting
stencil uses the standard 5 grid points in two dimensions and 7 grid points in three dimensions.

Similarly, the CIM2 is derived from a quadratic approximation on each side of the interface in one dimen-
sion. This results in a scheme which expresses uxk xk in terms of two grid data from each sides and two low-order
jump data on the interface. To connect information from each dimension, a one-side interpolation of tangen-
tial derivatives ut is expressed in terms of uxjxj again to reduce the number of interpolation points needed. This
will result in a d · d coupled equation for the principal second-order derivatives uxk xk ; k ¼ 1; . . . ; d. The one-
side interpolation is only applied to the cross derivatives. The resulting stencil involves 8 grid points in two
dimensions and 12–14 grid points in three dimensions. The method is simple and easy to implement in any
dimensions.

To analyze the stability of the resulting linear system for the CIM2, we demonstrate by numerical exper-
iment that its condition number behaves as that of a discrete Laplacian, and is insensitive to the relative loca-
tion of the interface in a grid cell. Further, we prove the solvability of the coupling equation, provided the
curvature j of the interface satisfies jh 6 Const, where h is the mesh size. This can always be achievable if
we refine the meshes.

The CIM1 requires that the interface intersects each grid segment (the segment connecting two adjacent
grid points) at most once. This is a very mild restriction and is always achievable by refining meshes. The
CIM2 requires basically that the interface does not intersect two adjacent grid segments simultaneously. This
requirement may not be satisfied at some interface points, where we use the CIM1. In practice, we classify the
underlying Cartesian grid points into interiors, normal on-fronts and exceptionals, where a standard central
finite difference method, the CIM2, and the CIM1 are adopted, respectively. This method maintains second-
order accuracy for most applications due to the fact that usually in d dimensions, the number of normal on-
front grid points is O(h1�d) and the number of the exceptional points is O(1).

Algebraic multigrid method (AMG) [42] is employed to solve the resulting linear system. Gauss–Seidel is
used for the smoother in the AMG. Numerical tests show that the AMG is very stable and fast with this sys-
tem. The reduction rate for each V-cycle is about 0.1–0.7 in most test cases. The computational time grows
essentially linear in the number of unknowns. Convergence tests for both CIM1 and CIM2 are performed.
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Numerical results show that they are first-order and second-order accurate, respectively. Comparison studies
with other existing second-order methods are performed. It is found that CIM2 produces less absolute errors
despite using few stencil grid points. Moreover, we demonstrate by many numerical examples that our method
is capable of handling complex interface problems in two and three dimensions.

This paper is organized as follows. Sections 2–4 are the coupling interface method (CIM1 and CIM2) in
one, two and general d dimensions, respectively. Section 5 is the numerical tests. It includes convergence tests
of the CIM1 and CIM2, a comparison study with other existing interface methods in two and three dimen-
sions. Section 6 is the conclusion. In Appendix A, we show a numerical example to demonstrate that cancel-
lation is responsible to the convergence of GFM; we also provide a proof of the solvability of the coupling
equation; and a pseudocode of the CIM for readers’ convenience.

2. One dimensional case

We consider the following elliptic interface problem on ½a; b� with an interface located at x̂ 2 ða; bÞ:
Fig. 1.
situate
� ðeðxÞu0ðxÞÞ0 ¼ f ðxÞ; x 2 ða; bÞ n fx̂g; ð1Þ
uðaÞ ¼ ua; uðbÞ ¼ ub;

½u�x̂ ¼ s; ½eux�x̂ ¼ r: ð2Þ
Here, the functions e(x) > 0 and f(x) are assumed to be smooth on both sides of x̂. To derive a finite difference
method for the above problem, we partition [a,b] into N subintervals evenly. Let h = (b � a)/N, xi = a + ih,
0 6 i 6 N. A grid point xi is called on-front if either ½xi�1; xiÞ or ½xi; xiþ1Þ contains an interface point. Otherwise,
it is called an interior point. At an interior point xi, a standard central finite difference scheme is adopted.
Namely,
�ðeu0Þ0ðxiÞ ¼ �
1

h2
ðeiþ1=2ðuiþ1 � uiÞ � ei�1=2ðui � ui�1ÞÞ þOðh2Þ: ð3Þ
For an on-front grid point xi, we propose a first-order coupling method (CIM1) and a second-order coupling
method (CIM2) below.

2.1. CIM1 in one dimension

Our basic assumption is that there is at most one interface point in each cell. Suppose there is an interface
point x̂ situated in the interval ½xi; xiþ1Þ. Here and after, We shall call the region where xi is located the X� side,
whereas the other X+ side. Let a :¼ ðx̂� xiÞ=h, 0 6 a < 1, b = 1 � a and let us use the abbreviations:
e� :¼ eðx̂�Þ; eþ :¼ eðx̂þÞ. In the interval ½xi; xiþ1Þ, like the approach of the ghost fluid method [36], we approx-
imate u by a piecewise linear function
uðxÞ �
u�ðxÞ :¼ ui þ ðu0Þ�iþ1=2ðx� xiÞ for xi 6 x < x̂;

uþðxÞ :¼ uiþ1 þ ðu0Þþiþ1=2ðx� xiþ1Þ for x̂ < x < xiþ1:

(

Here, ðu0Þ�iþ1=2 represents the approximation slopes of u in X± respectively in the interval ½xi; xiþ1Þ (see Fig. 1).
Linear approximation of the CIM1: u is approximated by two linear functions in the cell ½xi; xiþ1Þ in which an interface point x̂ is
d.
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From the jump condition (2), we get
Algor

1: fun
2: if

3:
4:
5: e

6:
7: e

8: �e
9: �q
10:
11: en
ðuiþ1 � bhðu0Þþiþ1=2Þ � ðui þ ahðu0Þ�iþ1=2Þ � s;

eþðu0Þþiþ1=2 � e�ðu0Þ�iþ1=2 � r:
This yields
ðu0Þ�iþ1=2 ¼
1

h
�qþðuiþ1 � uiÞ � �qþs� bh

r
�e

� �
þOðhÞ;

ðu0Þþiþ1=2 ¼
1

h
�q�ðuiþ1 � uiÞ � �q�sþ ah

r
�e

� �
þOðhÞ;

ð4Þ
where �e ¼ aeþ þ be�, �q� ¼ e�=�e. Similarly, we can define ðu0Þ�i�1=2 and ðu0Þþi�1=2 if there is an interface in
½xi�1; xiÞ. Otherwise, ðu0Þ�i�1=2 :¼ ðui � ui�1Þ=h. We recall that the minus sign in ðu0Þ�i�1=2 represents the X� side
where xi is situated. With these, we approximate (1) by
�ðeu0Þ0ðxiÞ ¼ �
1

h
eiððu0Þ�iþ1=2 � ðu0Þ

�
i�1=2Þ þOð1Þ: ð5Þ
The O(1) truncation error here produces an O(h) global error [26].
Notice that CIM1 allows interface points appear on both sides of xi. Indeed, the derivation of ðu0Þ�i�1=2 is

decoupled with that of ðu0Þþiþ1=2. This gives flexibility to use CIM1.
Below is a pseudocode of CIM1. In this code, s = 1 (resp. �1) represents the case where the interface x̂ lies

to the right (resp. left) of the grid point xi.

Algorithm 1. CIM1 in one dimension

1: procedure CIM1-1D (xi,h)
2: for s = �1,1 do

3: ð�Dsui; x̂s; �q�s ;�es; bs; csÞ  1stDerivative-1D(xi,h, s)
4: if c = 1 then

5: (ss,rs) the jump data locate at x̂s from xi side to the other side
6: �Js  �ðs�qþs ss þ bshrs=�esÞ
7: else

8: �Js  0
9: end If

10: u0iþs=2  1
h ð�Dsui þ �JsÞ

11: end For
12: �ðeu0Þ0ðxiÞ  � 1

h eðxiÞðu0iþ1=2 � u0i�1=2Þ
13: end procedure
ithm 2. First-order derivative in one dimension

ction ð�Dui; x̂; �q�;�e; b; cÞ ¼ 1stDerivative-1Dðxi; h; sÞ
There is an interface point x̂ in xi to xi + sh then

c 1; a jx̂s � xij=h; b 1� a.
e�  limt 0�eðx̂s þ stÞ; eþ  limt 0þeðx̂s þ stÞ.

lse

c 0; a 1; b 0; e�  eðxiÞ; x̂ ¼ xi þ sh
nd if

 aeþ þ be�
�  e�=�e
�Dui  �sqþðuðxi þ shÞ � uðxiÞÞ
d function
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2.2. CIM2 in one dimension

Suppose there is an interface point x̂ situated in ½xi; xiþ1Þ. To derive CIM2, we shall assume there is no other
interface points inside ½xi�1; xiþ2�. As in CIM1, let us call the side where xi is localed the X� side. We assume
that the interface point x̂ sits in ½xi; xiþ1Þ. See Fig. 2.

At xi, we introduce the following bias finite differencing:
�ðeu0Þ0ðxiÞ ¼ �
1

h2
ððei � ei�1Þðui � ui�1Þ þ eiu00i Þ þOðhÞ ð6Þ

:¼ � 1

h2
ðDð1Þei � Dð1Þui þ eiu00i Þ þOðhÞ: ð7Þ
where D(1)ei denotes for ei � ei�1. To maintain O(h) truncation error at xi, we need a first-order approximation
for the term u00i . The idea is to approximate u by quadratic functions on both sides of x̂. These involve six coef-
ficients. They are determined by the two jump conditions and realizing u at xi�1; xi; xiþ1 and xi+2. To be precise,
by Taylor expansion, let us express u on both sides of x̂ as
u�ðxÞ ¼ ui þ ui�ui�1

h þ 1
2
hu00i

� �
ðx� xiÞ þ 1

2
u00i ðx� xiÞ2 þOðh3Þ; for x 2 ½xi�1; x̂Þ;

uþðxÞ ¼ uiþ1 þ uiþ2�uiþ1

h � 1
2
hu00iþ1

� �
ðx� xiþ1Þ þ 1

2
u00iþ1ðx� xiþ1Þ2 þOðh3Þ; for x 2 ðx̂; xiþ2Þ;

(

where the conditions u�ðxi�1Þ ¼ ui�1; u�ðxiÞ ¼ ui; uþðxiþ1Þ ¼ uiþ1 and u+(xi+2) = ui+2 have been used. From the
jump conditions:
uþðx̂Þ � u�ðx̂Þ ¼ s; ðeu0Þþðx̂Þ � ðeu0Þ�ðx̂Þ ¼ r; ð8Þ
we can solve for u00i , u00iþ1 as
u00i ¼
1

h2
ðLð1Þui þ J iÞ þOðhÞ; ð9Þ

u00iþ1 ¼
1

h2
ðLð�1Þuiþ1 þ J iþ1Þ þOðhÞ; ð10Þ
where
Lð1Þui :¼ ai;�1ui�1 þ ai;0ui þ ai;1uiþ1 þ ai;2uiþ2;

Lð�1Þuiþ1 :¼ aiþ1;�2ui�1 þ aiþ1;�1ui þ aiþ1;0uiþ1 þ aiþ1;1uiþ2;

J i :¼ �ð1þ 2bÞqþs� ðbþ b2Þ rh
ê
;

J iþ1 :¼ ð1þ 2aÞq�s� ðaþ a2Þ rh
ê
:

and the corresponding coefficients are listed as follows:
Fig. 2. Quadratic approximation of CIM2: u is approximated by two quadratic functions in ½xi�1; xiþ2�.
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ê ¼ ðbþ b2Þ 1

2
þ a

� �
e� þ ðaþ a2Þ 1

2
þ b

� �
eþ;

q� ¼ e�

ê
;

ai;�1 ¼ ðbþ b2Þq� þ að1þ 2bÞqþ;
ai;0 ¼ �ðbþ b2Þq� � ð1þ aÞð1þ 2bÞqþ;
ai;1 ¼ ð1þ bÞ2qþ;
ai;2 ¼ �b2qþ;

aiþ1;1 ¼ ðaþ a2Þqþ þ bð1þ 2aÞq�;
aiþ1;0 ¼ �ðaþ a2Þqþ � ð1þ bÞð1þ 2aÞq�;
aiþ1;�1 ¼ ð1þ aÞ2q�;
aiþ1;�2 ¼ �a2q�:
Notice that the coefficients a’s are dimensionless. Furthermore,
minfe�; eþg 6 ê 6 ð1þ 2abÞmaxfe�; eþg 6 3

2
maxfe�; eþg:
Combining (7) and (9), we get
�ðeu0Þ0ðxiÞ ¼ �
1

h2
ðDð1ÞeiDð1Þui þ eiðLð1Þui þ J iÞÞ þOðhÞ: ð11Þ
We can get a similar formula for �(eu 0) 0(xi+1). Notice that the local truncation error is O(h) at these two on-
front grid points. It contributes O(h2) global error in the maximal norm.

By introducing an orientation indicator, we can unify the above finite difference formulae (9) and (10) into
just one formula. Let xi be an on-front point and x̂ be the nearest interface point (see Fig. 3). As before, we
shall call the region where xi is situated the X� region, and the other side the X+ region. We define e± to be the
limit of e(x) at x̂ from ± sides. The jump [u] is defined to be the difference of u(x) from + side to � side, that is
[u] = u+ � u�. At xi, let us define an orientation indicator s to be
s ¼
1 if x̂ 2 ½xi; xiþ1Þ;
�1 if x̂ 2 ½xi�1; xiÞ;
0 if xi is an interior point:

8><>:

Let us define the following parameters:
a ¼ jx̂� xij=h;

b ¼ 1� a;

�
ê ¼ 1

2
þ a

� �
ðbþ b2Þe� þ 1

2
þ b

� �
ðaþ a2Þeþ;

q� ¼ e�=ê;

(
a�s ¼ ðbþ b2Þq� þ að1þ 2bÞqþ;
a0 ¼ �ðbþ b2Þq� � ð1þ aÞð1þ 2bÞqþ;
as ¼ ð1þ bÞ2q�;
a2s ¼ �b2q�:

8>>>><>>>>:

ð12Þ
When s = 0, the parameters are defined to be
a ¼ 1; b ¼ 0; eþ ¼ e� ¼ eðxiÞ:



Fig. 3. Orientation indicator s is defined to be 1 if the interface x̂ lies to the right of xi (left subfigure) and �1 if the interface lies to the left
of xi (right subfigure): (a) s = 1 and (b) s = �1.
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We extend the definitions of D(1) and L(1) to the follows:
DðsÞui ¼
1

2
ðð1� sÞuiþ1 þ 2sui � ð1þ sÞui�1Þ; ð13Þ

¼

uiþ1�ui�1

2
if s ¼ 0;

ui � ui�1 if s ¼ 1;

uiþ1 � ui if s ¼ �1;

8><>:
LðsÞui ¼

a�sui�s þ a0ui þ asuiþs þ a2suiþ2s if s ¼ �1;

ui�1 � 2ui þ uiþ1 if s ¼ 0;

�
ð14Þ
We also define the jump operator at x̂ as
J x̂ ¼ � ð1þ 2bÞqþ½u� þ sðbþ b2Þh ½eu
0�

ê

� �
: ð15Þ
With these notations, we can express u00i and �(eu 0) 0 as
u00i ¼
1

h2
ðLðsÞui þ J x̂Þ þOðh2�jsjÞ; ð16Þ

� ðeu0Þ0ðxiÞ ¼ �
1

h2
ðDðsÞei � DðsÞui þ eiðLðsÞui þ J x̂ÞÞ þOðh2�jsjÞ: ð17Þ
Here are the pseudocode of CIM2:

Algorithm 3. CIM2 in one dimension

1: procedure CIM2-1D (xi,h)
2: ðLðsÞui; x̂; q; ê; b; sÞ  2ndDerivative-1Dðxi; hÞ
3: if s 6¼ 0 then

4: ðs; rÞ  the jump data locate at x̂s from xi side to the other side
5: J  �ðð1þ 2bÞsþ sðbþ b2Þhr=êÞ
6: else

7: J = 0
8: end if

9: DðsÞui  1
2 ðð1� sÞuiþ1 þ 2sui � ð1þ sÞui�1Þ

10: DðsÞei  1
2 ðð1� sÞeiþ1 þ 2sei � ð1þ sÞei�1Þ

11: u00i  1
h2 ðLðsÞui þ JÞ

12: �ðeu0Þ0ðxiÞ  � 1
h2 ðDðsÞeiDðsÞui þ eiu00i Þ

13: end procedure
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Algorithm 4. Second-order derivative in one dimension

1: function ðLðsÞui; x̂; q; ê; sÞ ¼ 2ndDerivative-1Dðxi; hÞ
2: if There is an interface point x̂ in ½xi � h; xi þ hÞ then

3: if x̂ P xi then

4: s 1, . There is no other interface point in ½xi�1; xiþ2Þ
5: else
6: s �1, . There is no other interface point in ½xi�2; xiþ2Þ
7: end if

8: a jx̂� xij=h; b 1� a.
9: e�  limt 0�eðx̂þ stÞ; eþ  limt 0þeðx̂þ stÞ.
10: ê ðbþ b2Þð12þ aÞe� þ ðaþ a2Þð12þ bÞe�,
11: q�  e�=ê
12: a�s (b + b2)q� + a(1 + 2b)q+

13: as (1 + b)2q+, a2s � b2q+

14: a0 �(a�s + as + a2s)
15: L(s)ui (a�su(xi � sh) + a0u(xi) + asu(xi + sh) + a2su(xi + 2sh))
16: else

17: s 0; Lð0Þui  ðuðxi � hÞ � 2uðxiÞ þ uðxi þ hÞÞ; J x̂  0
18: end if

19: end function

2.3. Stability issue for CIM2 in one dimension

We perform the following numerical investigation to analyze the stability of the coefficient matrix corre-
sponding to the CIM2 in one dimension. We choose the domain to be [0,1]. Assuming there is only one inter-
face point x̂ located in ð1=2; 1=2þ hÞ. We shall vary the coefficient a :¼ ðx̂� 1=2Þ=h from 0.1 to 0.9 with
increment 0.1. The coefficient e(x) is assumed to be piecewise constants with e� = 2 and e+ = 80. The number
of grid points N varies from 20 to 200 with increment 2. We use MATLAB to compute the eigenvalues and the
condition numbers of the coefficient matrix A. The result is shown in Fig. 4. Next, we fix a = 0.5 and e� = 2
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Fig. 4. (a) The minimal eigenvalue kminðN ; aÞ of the coefficient matrix for CIM2 is insensitive to N and a for large N. (b) The scaled
condition number condAðN ; aÞ=N 2 of the coefficient matrix A for CIM2. It is insensitive to N and a for large N. Here, e� = 2 and e+ = 80.
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Fig. 5. The minimal eigenvalue (left) and the scaled condition number cond A/N2 of the coefficient matrix of CIM2 with fixed a = 0.5,
e� = 2 and varying e+ from 2 to 200. (a) Minimal eigenvalue kmin as a function of e+. (b) Scaled condition number cond A/N2 as a function
of e+.
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and vary e+ from 2 to 200 with increment 2. The corresponding minimal eigenvalue and the scaled condition
number are shown in Fig. 5. We summarize the results as the follows.

1. All eigenvalues are positive.
2. The minimal eigenvalues kminðN ; aÞ are insensitive to N and a for N P 100, see Fig. 4a.
3. The scaled condition number condðAðN ; aÞÞ=N 2 is asymptotically constant for large N as that of a standard

discrete Laplacian, and is insensitive to a. See Fig. 4b.
4. The minimal eigenvalue is insensitive to the contrast of e. See Fig. 5a.
5. The scaled condition number increases linearly in e+. See Fig. 5b.

In other words, the stability property of the coefficient matrix corresponding to CIM2 is the same as that of
a discrete Laplacian.
3. Two dimensional cases

In two dimensions, let us assume our domain X ¼ ½0; 1� � ½0; 1�. We partition ½0; 1� into N subintervals. The
mesh size h :¼ 1/N. Let xi ¼ ih; yj ¼ jh; 0 6 i; j 6 N . Let ci+1/2,j (resp. ci,j+1/2) denote the number of intersec-
tions of the interface C and the grid segment ½xi; xiþ1Þ � fyjg (resp. fxig � ½yj; yjþ1Þ). We assume
ciþ1=2;j; ci;jþ1=2 6 1 for all 0 6 i; j 6 N � 1. This is always achievable by refining meshes. A grid point (xi,yj)
is called interior if none of its four neighboring segments intersects C. Otherwise, we call it on-front. For an
interior grid point, a standard central finite difference method is adopted. Below, we shall illustrate CIM dis-
cretization at an on-front grid point ðxi; yjÞ. As before, we shall call the region where ðxi; yjÞ is situated the X�

region, whereas the other the X+ region. The approximate solution of u in X� will be denoted by u�.
3.1. CIM1 in two dimensions

We first perform the following finite differencing:
�ððeuxÞx þ ðeuyÞyÞðxi; yjÞ ¼ �
ei;j

h
ððu�x Þiþ1=2;j � ðu�x Þi�1=2;j þ ðu�y Þi;jþ1=2 � ðu�y Þi;j�1=2Þ þOð1Þ:
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Here, the superscript �means that the quantity is in the X� region. Our goal is to provide a first-order approx-
imation to ðu�x Þi�1=2;j and ðu�y Þi;j�1=2. We shall only illustrate the discretization for ðu�x Þiþ1=2;j. Other cases are
duplication. We assume ci+1/2,j = 1, otherwise ðu�x Þiþ1=2;j is approximated by the central finite difference. There
are two sub cases in this case: (i) ci,j+1/2 = 0, (ii) ci,j+1/2 6¼ 0. The corresponding intersection points are denoted
by p and q. See Fig. 6.

The discretization procedure for ðu�x Þiþ1=2;j consists of the following three steps.

� Dimension-by-dimension discretization. We adopt the one-dimensional formula (4) on the segment
½xi; xiþ1Þ � fyjg. Thus, up to an error O(h),
Fig. 6.
ðu�x Þiþ1=2;j �
1

h
�qþp ðuiþ1;j � ui;jÞ � �qþp ½u�p � bph

½eux�p
�ep

� �
: ð18Þ
Here, bp;�ep :¼ ð1� bpÞeþp þ bpe
�
p ; �q

þ
p :¼ eþp =�ep, etc. are the same coefficients in (4) with respect to the intersec-

tion point p.
� Decomposition of jump data. In (18), the jump datum [eux]p is not available from the prescribed jump con-

dition, therefore we decompose it into tangential and normal directions of C at p:
½eux�p ¼ ½eun�pnx
p þ ½eut�ptx

p ¼ ½eun�pnx
p þ ðeþp ½ut�p þ ðeþp � e�p Þðu�t ÞÞtx

p: ð19Þ
Here, ðtx
p; t

y
pÞ and ðnx

p; n
y
pÞ the unit tangential and normal vectors of C at p;un and ut are the normal and tangen-

tial derivatives of u at p; ðu�t Þp means the limit of ut at p from X� side. The quantities [eun]p = r(p) and
[ut]p = st(p) are obtained from the prescribed jump data. But ðu�t Þp is not available. To discretize ðu�t Þp, we per-
form the following step.
� Coupling and one-side interpolation. First, we express ðu�t Þp by ðu�x Þptx

p þ ðu�y Þpty
p. Next, we approximate

ðu�x Þp and ðu�y Þp by the following formulae:

* ðu�x Þp � ðuxÞiþ1=2;j

* ðu�y Þp �
ðui;jþ1 � ui;jÞ=h if ci;jþ1=2 ¼ 0 ðCaseðiÞÞ;
ðuyÞi;jþ1=2 if ci;jþ1=2 ¼ 1 ðCaseðiiÞÞ:

�
With this, ðu�t Þp can be approximated by
ðu�t Þp � ðu�x Þiþ1=2;j � tx
p þ ðci;jþ1=2Þðu�y Þi;jþ1=2 � ty

p þ
1

h
�T xui;j;
where
�T xui;j ¼
0 if ci;jþ1=2 ¼ 1;

ðui;jþ1 � ui;jÞty
p if ci;jþ1=2 ¼ 0:

(

We plug this formula back to (18). For Case (i), we arrive the following equation for ðu�x Þiþ1=2;j:
When the interface intersects the x-axis, there are two subcases: either (i) ci,j+1/2 = 0, or (ii) ci,j+1/2 6¼ 0: (a) Case (i) and (b) Case (ii).
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ð1� �bptx
ptx

pÞðu�x Þiþ1=2;j ¼
1

h
�qþp ðuiþ1;j � ui;jÞ þ �bptx

p
�T xui;j þ �J p

� i
; ð20Þ
where
�bp ¼ �bpð�qþp � �q�p Þ;

�J p ¼ ��qþp ½u�p � bph
½eun�p

�ep
nx

p þ �qþp ½ut�tx
p

� �
:

For Case (ii), we obtain a 2 · 2 coupling equations for ðu�x Þiþ1=2;j and ðu�y Þi;jþ1=2:
�M
ðu�x Þiþ1=2;j

ðu�y Þi;jþ1=2

" #
¼ 1

h

�qþp ðuiþ1;j � ui;jÞ þ �bptx
p
�T xui;j þ �J p

�qþq ðui;jþ1 � ui;jÞ þ �bqty
q
�T yui;j þ �J q

" #
;

where
�M ¼
1� �bptx

ptx
p ��bptx

pty
p

��bqtx
qty

q 1� �bqty
qty

q

" #
:

By inverting �M , we obtain a finite difference approximation to ðu�x Þiþ1=2;j and ðu�y Þi;jþ1=2. Similarly, we can de-
rive a coupling equations for ðu�x Þi�1=2;j and ðu�y Þi;j�1=2 if both ci�1/2,j,ci,j�1/2 = 1.

Remarks.

� Notice that in our derivation, the equations for ðu�x Þiþ1=2;j; ðu�y Þi;jþ1=2 and the equations for ðu�x Þi�1=2;j;
ðu�y Þi;j�1=2 are decoupled.
� In case (i) for ðu�y Þp, we may also approximate it by (ui,j+1 � ui,j�1)/(2h) if ci,j�1/2 = ci,j+1/2 = 0.
� The CIM1 is essentially equivalent to the ghost fluid method [36] except the treatment of the term [eut] in

formula (19). In GFM, this term is neglected. The effect of this neglect is shown in Appendix A.

3.2. CIM2 in two dimensions

There are some restrictions to a grid point to apply the CIM2. Roughly speaking, the basic requirement is
to allow the one-dimensional formula (9) to be applicable in both x and y directions there. We call such a grid
point a normal on-front grid point. A precise definition will be given in Section 4.

Let ðxi; yjÞ be a normal on-front grid point. There are also two sub cases here: either C intersects one grid
segment or two grid segments, just like the two sub cases in CIM1. See Fig. 7.

Case 1. The interface intersects the grid segment in the x-direction only. See Fig. 7, (a). In this case, we approx-
imate ðeuyÞyðxi; yjÞ by a standard central finite difference. The term ðeuxÞxðxi; yjÞ is approximated by
�ðeuxÞxðxi; yjÞ ¼ �
1

h2
ððDð1Þx eÞi;jðDð1Þx uÞi;j þ ei;jh

2ðuxxÞi;jÞ þOðhÞ;
where the operators Dð1Þx is defined by (13) in the x-direction. Our goal is to derive a first-order finite difference
approximation for (uxx)i,j. Below, let us drop the sub-index ði; jÞ from (uxx)i,j for notational simplicity. The
discretization procedure for uxx at ðxi; yjÞ consists of the following three steps.
� Dimension-by-dimension discretization. We use the one-dimension formula for CIM2 (16) to get
uxx ¼
1

h2
Lð1Þx u� ð1þ 2bpÞqþp ½u�p � ðbp þ b2

pÞh
½eux�p

êp

� �
þOðhÞ;
where Lð1Þx is the extension of (14) in the x-direction and the coefficients are defined in (12) with respect to the
intersection p.



Fig. 7. Normal on-front points in two dimensions: (a) Case 1 and (b) Case 2.
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� Decomposition of the one-dimensional jump data. We decompose the jump [eux]p into normal and tan-
gential directions:

½eux�p ¼ ½eun�p � nx
p þ eþp ½ut�p þ ðeþp � e�p Þðu�t Þp

� �
� tx

p:

� Coupling and one-side interpolation. We express ðu�t Þp in terms of uxx again. The cross derivative is
approximated by one-side interpolation.

ðu�t Þp ¼ ðu�x Þptx
p þ ðu�y Þpty

p

¼ ui;j � ui�1;j

h
þ 1

2
þ ap

� �
huxx

� �
tx
p þ ð1þ apÞ

ui;jþ1 � ui;j�1

2h
� ap

ui�1;jþ1 � ui�1;j�1

2h

� �
ty
p þOðh2Þ

:¼ 1

h
T xuþ h

1

2
þ ap

� �
tx
puxx þOðh2Þ:

By plugging ðu�t Þp into the formula for uxx, we arrive an equation for uxx:
1þ 1

2
þ ap

� �
bptx

ptx
p

� �
uxx ¼

1

h2
ðLð1Þx uþ bptx

pT xuþ J pÞ;
where
bp ¼ �ðbp þ b2
pÞðqþp � q�p Þ;

J p ¼ � ð1þ 2bpÞqþp ½u�p þ ðbp þ b2
pÞh
½eun�
êp

nx
p þ qþp ½ut�tx

p

� �� �
:

Case 2. The interface intersects grid segments in both x and y-directions. See Fig. 7, Case (2). The discretization
formulae for uxx and uyy at ði; jÞ are derived by the following three steps:

� Dimension-by-dimension discretization: We apply the one-dimensional formula (16) in both x and y

directions to get
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uxx ¼
1

h2
Lð1Þx u� ð1þ 2bpÞ½u�p � ðbp þ b2

pÞh
½eux�p

êp

� �
þOðhÞ;

uyy ¼
1

h2
Lð1Þy u� ð1þ 2bqÞ½u�q � ðbq þ b2

qÞh
½euy �q

êq

� �
þOðhÞ:
Here, the coefficients are defined in (12) with respect to the intersections p and q.
� Decomposition of the jump data:
½eux�p ¼ ½eun�pnx
p þ ðeþp ½ut�p þ ðeþp � e�p Þðu�t ÞpÞðtx

pÞ;
½euy �q ¼ ½eun�qny

q þ ðeþq ½ut�q þ ðeþq � e�q Þðu�t ÞqÞðty
qÞ:

� Coupling and one-side interpolation:

ðu�t Þp ¼
ui;j � ui�1;j

h
þ 1

2
þ ap

� �
huxx

� �
tx
p

þ ð1þ apÞ
ui;j � ui;j�1

h
� ap

ui�1;j � ui�1;j�1

h
þ 1

2
huyy

� �
ty
p þOðh2Þ

:¼ 1

h
T xuþ h

1

2
þ ap

� �
tp
xuxx þ h

1

2
tp
y uyy ;

ðu�t Þq ¼
ui;j � ui;j�1

h
þ 1

2
þ aq

� �
huyy

� �
ty
q

þ ð1þ aqÞ
ui;j � ui�1;j

h
� aq

ui;j�1 � ui�1;j�1

h
þ 1

2
huxx

� �
tx
q þOðh2Þ

:¼ 1

h
T yuþ h

1

2
þ aq

� �
ty
quyy þ h

1

2
tx
quxx:

By plugging ðu�t Þp, ðu�t Þq back to the formulae uxx and uyy, we arrive the following coupling equation:
M
uxx

uyy

	 

¼

Lxuþ bptx
pT xuþ J p

Lyuþ bqty
qT yuþ J q

" #
; ð21Þ
where
M ¼
1� 1

2
þ ap

� �
bptx

ptx
p � 1

2
bptx

pty
p

� 1
2
bqtx

qty
q 1� 1

2
þ aq

� �
bqty

qty
q

" #
;

bp ¼ �ðbp þ b2
pÞðqþp � q�p Þ;

bq ¼ �ðbq þ b2
qÞðqþq � q�q Þ;

J p ¼ � ð1þ 2bpÞ½u�p þ ðbp þ b2
pÞh
½eun�p

êp
np

x þ qþp ½ut�ptp
x

� �� �
;

J q ¼ � ð1þ 2bqÞ½u�q þ ðbq þ b2
qÞh
½eun�q

êq
nq

y þ qþq ½ut�qty
q

� �� �
:

We shall see in Appendix A that M is invertible if jh < Const. By inverting M in (21), we obtain finite differ-
ence approximation formula of uxx and uyy at (i, j).
Remark. Notice that the definitions of Tx in case 1 and 2 are slightly different. A unified definition in d

dimensions will be given by (39).
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4. CIM for complex interface problems

In dealing with complex interface problems in d dimensions, we classify the underlying Cartesian grid
points into interiors, normal on-fronts and exceptionals. A standard central finite difference method is applied
to interior grid points; the CIM2 is adopted at normal on-front points; and the CIM1 is used at those excep-
tional grid points. We call this method the hybrid coupling interface method, or simply the coupling interface
method. In most applications, the number of grid points is O(h�d) for interiors, O(h1�d) for normal on-fronts,
and O(1) for exceptionals. This leads to a second-order accuracy for the hybrid coupling interface method.

4.1. Classification of grid points

In d dimensions, we consider our domain to be ½0; 1�d . We partition ½0; 1� into N subintervals evenly. Let
h = 1/N. We use the multi-index i to stand for ði1; . . . ; idÞ. Let ek; k ¼ 1; . . . ; d be the Euclidean unit vectors.
We define ciþ1

2ek
to be the number of the intersections of the segment ½xi; xiþek Þ and the interface C, and we

assume ciþ1
2ek
6 1 for all i and k. This assumption is quite mild for most applications. A grid point xi is called

an interior grid point if for all 1 6 k 6 d; ci�1
2ek
¼ ciþ1

2ek
¼ 0, otherwise we call it on-front. We further classify

those on-front grid points into normal and exceptional. To give a precise definition, we first define the interface
orientation indicator si,k at xi in the direction ek to be si;k :¼ ciþ1

2ek
� ci�1

2ek
. A normal on-front grid point xi is

defined to satisfy the following conditions:

� 8k; ciþ1
2ek
þ ci�1

2ek
¼ 0 or 1, and when ciþ1

2ek
þ ci�1

2ek
¼ 1 and if ciþ1

2si;k ek
¼ 1, then ciþ3

2si;kek
¼ 0;

� when ciþ1
2ek
þ ci�1

2ek
¼ 1, then for all j 6¼ k

* if ciþ1
2ej
¼ ci�1

2ej
¼ 0 then ci�si;k ekþ1

2ej
¼ ci�si;kek�1

2ej
¼ 0,

* if ciþ1
2ej
¼ 1 then ci�si;kek�1

2ej
¼ 0,

* if ci�1
2ej
¼ 1 then ci�si;kekþ1

2ej
¼ 0.

The first condition means that we can apply the CIM2 to every coordinate direction. The second condition
allows us to perform one-side interpolation for the cross derivatives uxk xj at xi. Fig. 8 contains all possible cases
of a normal on-front grid points in two and three dimensions, up to rotation and reflection. In Fig. 8, the cen-
tered grid point is a normal on-front grid point xi; the bullet points are the grid points appeared in the finite
difference stencil about xi. There are 8 such points in two dimensions and 12–14 points in three dimensions. A
pseudocode for grid point classification will be put in Appendix A.

4.2. CIM1 in d dimensions

Let xi be an on-front grid point at which we plan to discretize the PDE (1). For simplicity of notation, let us
drop the index i. The interface C partitions the domain into two regions X±. As before, we call the component
where x is situated X� and the other X+. At x, we first perform the following approximation:
�r � ðeðxÞruðxÞÞ ¼ � eðxÞ
h

Xd

k¼1

o

oxk
u� xþ 1

2
hek

� �
� o

oxk
u� x� 1

2
hek

� �� �
þOð1Þ:
Our goal is provide a first-order finite difference approximation to these quantities. We shall only discuss the
case for ou�=oxkðxþ hek=2Þ; k ¼ 1; . . . ; d. The discussion for the case of ou�=oxkðx� hek=2Þ; k ¼ 1; . . . ; d is
identical. The discretization procedure consists of the following steps.

4.2.1. Dimension-by-dimension discretization

At x, we adopt the one-dimensional formula (5) in each segment ðx;xþ hekÞ. Namely, up to an error O(h),
o

oxk
u� xþ 1

2
hek

� �
� 1

h
�qþk ðuðxþ hekÞ � uðxÞÞ � �qþk ½u�bxk

� bkh
½eru � ek�bxk

�ek

 !
; ð22Þ



Fig. 8. Normal on-front points. bullet: grid points used in the stencil. cross: interface points. bullet with circle: xi. (a) Two dimension: 2
cases and (b) three dimension: 3 cases.

2154 I.-L. Chern, Y.-C. Shu / Journal of Computational Physics 225 (2007) 2138–2174
where bxk is the intersection of the interface C and the grid segment ½x; xþ hekÞ. The coefficients bk, etc. are
defined as those in the one-dimensional formula (4).

4.2.2. Decomposition of jump data in each dimension

To compute ½eru � ek�bxk
, we decompose ek into a linear combination of nk and tk at bxk, where nk is the unit

normal vector of the interface at bxk from X� to X+ and tk is the unit vector in the projection of ek onto the
tangent plane of C at bxk. The jump ½eru � ek�bxk

is decomposed into the follows:
½eru � ek�bxk
¼ ½eru � nk�bxk

ðnk � ekÞ þ ½eru � tk�bxk
ðtk � ekÞ

¼ ½eru � nk�bxk
ðnk � ekÞ þ ðeþk ½ru � tk�bxk

þ ðeþk � e�k Þru�ðbxkÞ � tkÞðtk � ekÞ: ð23Þ
The quantities ½eru � nk�bxk
¼ rðbxkÞ and ½ru � tk�bxk

¼ os=otkðbxkÞ are obtained from the prescribed jump condi-

tions. After substituting (23) into (22), we get
o

oxk
u� xþ 1

2
hek

� �
¼ 1

h
ð�DkuðxÞ þ �bkhðru�ðbxkÞ � tkÞðtk � ekÞ þ �J kÞ þOðhÞ: ð24Þ
where
�DkuðxÞ ¼ �qþk ðuðxþ hekÞ � uðxÞÞ; ð25Þ
�bk ¼ �bkð�qþk � �q�k Þ; ð26Þ

�J k ¼ � �qþk ½u�bxk
þ bkh

½eru � nk�
�ek

ðnk � ekÞ þ �qþk ½ru � tk�bxk
ðtk � ekÞ

� �� �
: ð27Þ
4.2.3. Coupling and one-side interpolation

We approximate ou�=oxjðbxkÞ in terms of ou�/oxj(x + hej/2) (with O(h) error) by Taylor expansion as the
follows.

� j ¼ k : o
oxk

u�ðx̂kÞ � o
oxk

uðxþ 1
2
hekÞ,

� j 6¼ k : o
oxj

u�ðx̂kÞ �
uðxþhejÞ�uðxÞ

h for ciþ1
2ej
¼ 0;

o
oxj

u�ðxþ 1
2
hejÞ for ciþ1

2ej
6¼ 0:

(
By plugging this formula back to (24), we arrive a d · d systems of linear equations:
�M
o

oxk
u xþ 1

2
hek

� �� �d

k¼1

" #
¼ 1

h
ð�DkuðxÞ þ �bk

�T kuðxÞðtk � ekÞ þ �J kÞdk¼1

h i
;

where
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�T kuðxÞ ¼
Xd

j¼1;j 6¼k

ðuðxþ hejÞ � uðxÞÞðtk � ejÞ 1� ciþ1
2ej

� �
:

The entries of �M are:
ð �MÞk;j ¼
1� ck

�bkðtk � ekÞ2 if k ¼ j;

�cjck
�bkðtk � ejÞðtk � ekÞ if k 6¼ j:

(

Notice that ck here is an abbreviation of ciþ1

2ek
.

4.3. CIM2 in d dimensions

The CIM2 discretization procedure is divided into the following three steps.

4.3.1. Dimension-by-dimension discretization

We first approximate � o
oxk
ðeðxÞ ou

oxk
Þ by
� o

oxk
eðxÞ ou

oxk

� �
¼ � o

oxk
eðxÞ

� �
o

oxk
uðxÞ

� �
� eðxÞ o2

ox2
k

uðxÞ

¼ � 1

h2
ðDðskÞ

k eðxÞÞðDðskÞ
k uðxÞÞ þ eðxÞh2 o

2

ox2
k

uðxÞ
� �

þOðhÞ; ð28Þ
where sk :¼ ciþ1
2ek
� ci�1

2ek
and
DðskÞ
k uðxÞ :¼ 1

2
ðð1� skÞuðxþ hekÞ þ 2skuðxÞ � ð1þ skÞuðx� hekÞÞ ð29Þ

¼

1
2
ðuðxþ hekÞ � uðx� hekÞÞ if sk ¼ 0;

uðxÞ � uðx� hekÞ if sk ¼ 1;

uðxþ hekÞ � uðxÞ if sk ¼ �1:

8><>: ð30Þ
Next, we derive a finite difference approximation to o
2u=ox2

k . We adopt the one-dimensional formula (16):
o
2

ox2
k

uðxÞ ¼ 1

h2
LðskÞ

k uðxÞ � ð1þ 2bkÞ½u�bxk
� skðbk þ b2

kÞh
½eru � ek�bxk

êk

 !
þOðhÞ; ð31Þ
where LðskÞ
k uðxÞ is defined as
LðskÞ
k uðxÞ ¼

ak;�sk uðx� skhekÞ þ ak;0uðxÞ þ ak;sk uðxþ skhekÞ þ ak;2sk uðxþ 2skhekÞ if sk ¼ �1;

uðx� hekÞ � 2uðxÞ þ uðxþ hekÞ if sk ¼ 0:

�
ð32Þ
4.3.2. Decomposition of jump data in each dimension

The jump ½eru � ek�bxk
is decomposed into the follows:
½eru � ek�bxk
¼ ½eru � nk�bxk

ðnk � ekÞ þ ½eru � tk�bxk
ðtk � ekÞ

¼ ½eru � nk�bxk
ðnk � ekÞ þ êþk ½ru � tk�bxk

þ ðêþk � ê�k Þðru�ðbxkÞ � tkÞ
� �

ðtk � ekÞ: ð33Þ
The quantities ½u�bxk
; ½eru � nk�bxk

and ½ru � tk�bxk
can be obtained from the prescribed jump conditions. Substi-

tuting (33) into (31), we obtain
o
2

ox2
k

uðxÞ ¼ 1

h2
LðskÞ

k uðxÞ þ skbkðru�ðbxkÞ � tkÞðtk � ekÞ þ J k

� �
þOðhÞ; ð34Þ
where
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bk ¼ �ðbk þ b2
kÞðqþk � q�k Þ; ð35Þ

J k ¼ � ð1þ 2bkÞ½u�bxk
þ skðbk þ b2

kÞh
½eru � nk�bxk

êk
ðnk � ekÞ þ qþk ½ru � tk�bxk

� ðtk � ekÞ
 ! !

: ð36Þ
4.3.3. Coupling and one-side interpolation

We use the following formula to give a second-order approximation to ou�=oxjðbxkÞ:
ou�

oxj
ðbxkÞ ¼

1
h DðskÞ

k uðxÞ þ 1
2
þ ak

� �
skh o2

ox2
k
uðxÞ þOðh2Þ for j ¼ k;

1
h DðsjÞ

j ð1þ akÞuðxÞ � akuðx� skhekÞð Þ þ sj
h
2

o2

ox2
j
uðxÞ þOðh2Þ otherwise:

8<: ð37Þ
This formula is derived from Taylor expansion. Basically, the cross derivatives are approximated by one-side
interpolation, whereas the principal second-order derivatives uxk xk are remained. The purpose to do this is to
reduce the total number of grid points used for one-side interpolations.

From (37), we obtain
ru�ðbxkÞ � tk ¼
1

h
T kuðxÞ þ h sk

1

2
þ ak

� �
ðtk � ekÞ

o2

ox2
k

uðxÞ þ 1

2

Xd

j¼1;j 6¼k

sjðtk � ejÞ
o2

ox2
j

uðxÞ
 !

þOðh2Þ; ð38Þ
where Tku(x) is defined as
T kuðxÞ ¼ ðtk � ekÞDðskÞ
k uðxÞ þ

Xd

j¼1;j 6¼k

ðtk � ejÞDðsjÞ
j ðð1þ akÞuðxÞ � akuðx� skhekÞÞ: ð39Þ
Combining (34), (36) and (38), we obtain a d · d system of linear equations for ðo2u=ox2
kðxÞÞ

d
k¼1:
M
o2

ox2
k

uðxÞ
� �d

k¼1

¼ 1

h2
ðLuðxÞ þ TuðxÞ þ JÞ;
where Md·d = (mk,j)d·d is defined by
mk;j ¼
1� jskjð12þ akÞbkðtk � ekÞ2 j ¼ k;

� 1
2
sjskbkðtk � ejÞðtk � ejÞ j 6¼ k;

(
ð40Þ

L ¼ ðL1; � � � ; LdÞT;
T ¼ ðs1b1T 1; � � � ; sdbdT dÞT;
J ¼ ðJ 1; � � � ; J dÞT:
We shall show in Appendix A that under the condition jh < Const, the matrix M is invertible. Here j is the
total curvature. Hence we get
h2 o2

ox2
k

uðxÞ
� �d

k¼1

¼M�1ððLuðxÞ þ TuðxÞ þ JÞÞ: ð41Þ
Substituting this formula into (28) and defining a vector ~e by
~e ¼ eðxÞ 1 1 � � � 1½ �M�1 ¼ ~e1 ~e2 � � � ~ed½ �;
we get
�r � ðeðxÞruðxÞÞ ¼ � 1

h2

Xd

k¼1

ððDðskÞ
k eðxÞÞðDðskÞ

k uðxÞÞ þ ~ekðLkuðxÞ þ skat;kT kuðxÞ þ J kÞÞ þOðhÞ: ð42Þ
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5. Numerical experiments

In this section, we perform the following numerical investigation:

1. convergence tests for CIM1 in three dimensions,
2. convergence tests and a comparison study for CIM2 in two and three dimensions,
3. convergence tests and a comparison study for the (hybrid) CIM for complex interface problems in two and

three dimensions.

5.1. Numerical implementation

The numerical implementation of CIM is easy. It is only few hundred lines of C code. The logic of the clas-
sification of grid points is also simple, there are only two cases in two dimensions and three cases in three
dimensions. Algebraic multigrid (AMG) is adopted for solving the resulting linear systems. Gauss–Seidel
method is used as a smoother. For readers’ convenience, a pseudocode is provided in Appendix A.

5.2. Convergence tests of the CIM1

Example 1. We propose six interfaces in three dimensions to test the convergence of the CIM1. They are
plotted in Fig. 9.

� Eight balls: /ðx; y; zÞ ¼ min06k67f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xkÞ2 þ ðy � ykÞ

2 þ ðz� zkÞ2
q

g � 0:3, where (xk,yj,zk) =

((�1)ºk/4ß · 0.5, (�1)ºk/2ß · 0.5, (�1)k · 0.5), 0 6 k 6 7.

� Ellipsoid: /ðx; y; zÞ ¼ 2x2 þ 3y2 þ 6z2 � 1:32.
� Peanut: /ðr; h;/Þ ¼ r � 0:5� 0:2 sinð2hÞ sinð/Þ.
� Donut: /ðx; y; zÞ ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
� 0:6Þ2 þ z2 � 0:09.

� Banana1: /(x,y,z) = (7x + 6)4 + 2401y4 + 3601.5z4 + 98(7x + 6)2y2 + 98(7x + 6)2z2 + 4802y2z2 �
94(7x + 6)2 + 3822y2 � 4606z2 + 1521.

� Popcorn: /ðx; y; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
� r0 �

P11
k¼0Ae�ððx�xkÞ2þðy�ykÞ2þðz�zkÞ2Þ=r2

, where
1 Th
ðxk; yk; zkÞ ¼
r0ffiffiffi

5
p 2 cos

2kp
5

� �
; 2 sin

2kp
5

� �
; 1

� �
; 0 6 k 6 4;

ðxk; yk; zkÞ ¼
r0ffiffiffi

5
p 2 cos

ð2ðk � 5Þ � 1Þp
5

� �
; 2 sin

ð2ðk � 5Þ � 1Þp
5

� �
;�1

� �
; 5 6 k 6 9;

ðx10; y10; z10Þ ¼ ð0; 0; r0Þ;
ðx11; y11; z11Þ ¼ ð0; 0;�r0Þ:
The parameters are: r0 = 0.6, A = 2, r = 0.2.

We choose the following coefficients and test function:
eðxÞ ¼
e�; x 2 X�;

eþ; x 2 Xþ;

�

with e� = 2, e+ = 80, and
is example is taken from http://www.mai.liu.se/ejoh/math.html.

http://www.mai.liu.se/ejoh/math.html


–1
–0.5

0

0.5

1

0
0.5

1

0

0.5

1

Ellipsoid

–1–0.8–0.6–0.4–0.200.20.40.60.81
y

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

z

D
on

ut
s

–1–0.8
–0.6

–0.4
–0.2
0

0.2
0.4

0.6
0.8
1x–1

–0.8
–0.6

–0.4
–0.2

00.2
0.4

0.6
0.8

1y–0.8
–0.6
–0.4
–0.2

00.2
0.4
0.6
0.8

1z
uðx; y; zÞ ¼ x3 þ xy2 þ y3 þ z4 þ sinð3ðx2 þ y2ÞÞ; x 2 X�;

xy þ x4 þ y4 þ xz2 þ cosð2xþ y2 þ z3Þ; x 2 Xþ:

�

The function u is designed so that the cross derivatives are non-trivial. The jump conditions and the source f
are derived from the governing Eq. (1). Fig. 10 is the log–log plot of N (N = 1/h) versus the absolute error
iu � uei1. The number N varies from 20 to 120 with increment 10.

The least square fit of the absolute errors shows that the order of accuracy of the CIM1 is between 1.1 and
1.3 for these three-dimensional complex interface problems.

5.3. Convergence and comparison study of CIM2

In this subsection, we perform the numerical investigation for the CIM2. This includes (i) a study of grid
orientation effect, (ii) a comparison with some other existing second-order methods for benchmark test
problems.

5.3.1. Study of grid orientation effect of the CIM2

Since the stencil of the CIM2 is not symmetric, one may worry it may produce different errors by simply
rotating the grid frame. To investigate this potential problem, we design the following test problem.

Example 2. The computational domain X ¼ ½�1; 1�2. In X, we choose the interface C to be a straight line
defined by /ðx; yÞ ¼ cos hxþ sin hy ¼ 0. The coefficient
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Fig. 10. Convergence tests for the CIM1. The x-axis: log10(N), the y-axis: log10(iu � uei1), where N is the number of grid point in each
dimension ranging from 20 to 120. The least square fit shows that the order of accuracy of the CIM1 is about 1.1–1.3: (a) 8 balls,
(b) ellipsoid, (c) peanut, (d) donut, (e) banana, (f) popcorn.
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eðx; yÞ ¼
e�; /ðx; yÞ < 0;

eþ; /ðx; yÞP 0;

�

with e� = 2 and e+ = 80. The exact solution u is chosen to be symmetric about 0:
uðx; yÞ ¼
r2 for /ðx; yÞ < 0;
1
e2
ð1

2
r4 þ r2Þ þ c for /ðx; yÞP 0;

(

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, and c ¼ 1� 9

8e2
. To investigate the grid orientation effect, we rotate the interface with h

varying from 0� to 90� with increment 2�. Fig. 11 is the maximum errors versus h with mesh size h = 0.02
(or N = 100). We observe that the maximum errors vary only slightly, within tolerance of the second-order
errors. No grid orientation effect is found.
5.4. Convergence and comparison study for the CIM2

For comparison study we shall compare with EJIIM, MIIM, DIIM, JCCS and MIB. The compared cases
and methods are listed in Table 1.

In the test problems below, the computational domain is X = [ � 1,1]d, and the interface is represented by
/(x) = 0. The region X is partitioned into X� :¼ {x 2 Xj/(x) < 0} and X+ :¼ {x 2 Xj/(x) > 0}. The exact
solution ue is prescribed. The jump conditions, boundary conditions and the source terms are then computed
analytically from Eq. (1). In these comparison studies, the compared item is the maximum norm of the abso-
lute error u, i.e. iu � uei1. In addition, we also list the total CPU time and the maximum norm of the errors of
$u along the interface. We use (37) and (34) to compute the gradients on the interface.



Table 1
Table of compared methods and benchmark test cases

Method EJIIM [49] MIIM [30,8] DIIM [5] JCCS [48] MIB [53]
Year 2000 2001, 2003 2004 2004 2006

2D Example 3
p p p

Example 4
p p

3D Example 5
p
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Fig. 11. Study of grid orientation effect for the CIM2. As we vary the grid orientation h from 0� to 90�, we find the errors change within
the tolerance error for the case of N = 100. No grid orientation effect is found for the CIM2.
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Examples 3 and 4 are two benchmark problems in two dimensions. Example 5 is a comparison test of inter-
face problems in three dimensions. The corresponding figures in each examples are the absolute errors com-
puted by the CIM2. The corresponding tables are the comparison results. The compared item is the absolute
error iu � uei1,C. In addition, we also list the CPU time and the gradient error.

We list the following observed results from these comparison tables:

1. CIM2 is second-order accurate for both u and its gradients.
2. CIM2 produces less absolute error as compared with other methods, despite it uses few interpolation

points.
3. CIM2 is less sensitive to the contrast of e.

In addition, we show the gradients (i.e. i$u � $uei1,C) are also second-order accurate. In the column of the
CPU time spent by CIM2, we observe that they grow slightly more than linear as a function of number of
unknowns. This is because the reduction rate of AMG increases from 0.1 to 0.7 as we refine the meshes.

Example 3. This benchmark test is quoted from [26]:
/ðx; yÞ ¼ r � 0:5;

eðx; yÞ ¼ 1þ r2; ðx; yÞ 2 X�;

b; ðx; yÞ 2 Xþ;

�
ueðx; yÞ ¼

r2; ðx; yÞ 2 X�;

ðr4=2þ r2 þ 0:1 logð2rÞÞ=b� ð0:54=2þ 0:52Þ=bþ 0:52; ðx; yÞ 2 Xþ;

�
f ðx; yÞ ¼ �8r2 � 4;
where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and b is a parameter. We show the results for b ¼ 10; 1000 and 0.001 (Fig. 12, Tables 2–4).
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Example 4. This example is quoted from [48,53]:
/ðx; yÞ ¼ x2

18=27

� �2

þ y
10=27

� �2

� 1;

eðx; yÞ ¼
e�; ðx; yÞ 2 X�;

eþ; ðx; yÞ 2 Xþ;

�
ueðx; yÞ ¼

ex cos y; ðx; yÞ 2 X�;

5e�x2�y2=2; ðx; yÞ 2 Xþ;

�
f ðxÞ ¼

0; ðx; yÞ 2 X�;

�5e�x2�y2=2ð�3þ 4x2 þ y2Þ; ðx; yÞ 2 Xþ:

�

We show the cases for eþ ¼ 1; e� ¼ 10; 1000 as those in [48,53] (Fig. 13, Tables 5 and 6).
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Example 5. This three-dimensional example is taken from [8]:
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where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
(Fig. 14, Tables 7–9).
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5.5. Convergence and comparison for the hybrid CIM

In this subsection, we shall test hybrid CIM for complex interface problems in two and three dimensions.
First, we perform convergence test for the those three-dimensional complex interface problems tested by
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Fig. 14. Example 5. A slice of ju � uej at z = 0 at mesh 40 · 40 · 40. (a) ju � uej: b = 10 and (b) ju � uej: b = 1000.

Table 6
Example 4: e� = 1000, e+ = 1

N CIM2 MIB JCCS

CPU i$u � $uei1,C iu � uei1 iu � uei1 iu � uei1

20 0.01 1.551 · 100 3.539 · 10�1 9.130 · 10�2 2.803 · 100

40 0.08 4.682 · 10�1 1.100 · 10�1 2.764 · 10�2 7.543 · 10�1

80 0.41 8.966 · 10�2 2.028 · 10�2 7.524 · 10�3 1.940 · 10�1

160 2.26 2.799 · 10�2 6.462 · 10�3 2.169 · 10�3 4.906 · 10�2

320 7.29 6.343 · 10�3 1.437 · 10�3 4.841 · 10�4 1.232 · 10�2

Table 7
Example 5: b = 1

N CIM2 MIIM, 27 points

CPU i$u � $uei1,C iua � uei1/iuei1 Order iua � uei1/iuei1 Order

26 1.52 1.005 · 10�2 1.822 · 10�4 1.247 · 10�3

52 20.5 3.685 · 10�3 4.153 · 10�5 2.133 3.979 · 10�3 1.648
104 212 9.729 · 10�4 9.529 · 10�6 2.124 9.592 · 10�4 2.052
208 2355 2.540 · 10�4 2.230 · 10�6 2.095 – –

Table 8
Example 5: b = 10

N CIM2 MIIM, 27 points

CPU i$u � $uei1,C iua � uei1/iuei1 Order iua � uei1/iuei1 Order

26 1.45 7.174 · 10�3 4.332 · 10�4 1.525 · 10�3

52 19.14 2.693 · 10�3 9.240 · 10�5 2.229 5.240 · 10�4 1.541
104 161 7.401 · 10�4 1.636 · 10�5 2.498 1.010 · 10�4 2.375
208 1867 1.979 · 10�4 3.330 · 10�6 2.297 – –

Table 9
Example 5: b = 1000

N CIM2 MIIM, 27 points

CPU i$u � $uei1,C iua � uei1/iuei1 Order iua � uei1/iuei1 Order

26 1.48 6.825 · 10�3 9.133 · 10�4 3.845 · 10�3

52 24.54 2.594 · 10�3 2.466 · 10�4 1.889 1.111 · 10�3 1.649
104 209 7.183 · 10�4 3.447 · 10�5 2.839 1.605 · 10�4 2.791
208 3299 1.925 · 10�4 4.727 · 10�6 2.866 – –
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CIM1 in the beginning of this section. We observe an improvement by using hybrid CIM over the CIM1.
Next, we shall perform a comparison study with the FIIM by a benchmark complex interface problem in
two dimensions. We shall observe that hybrid CIM produces less error.
5.5.1. Number of exceptional grid points

In order to maintain second-order accuracy of the hybrid CIM, the number of exceptional points should
stay O(1) as we increase the total number of grid points. Fig. 15 contains the numbers of exceptional points
versus N (the number of grid points in each dimension) with N ranging from 20 to 500 printed at every
DN = 2. We observe that the numbers of exceptional points are less than 200 in most cases as we vary the
number of grid points from 203 to 5003. For the case of 8 balls, this number of exceptional points can go
up to 1200 out of the total number of grid point 4203. However, the occurrence of the exceptional points is
rare for this case.
5.5.2. Convergence tests for the hybrid CIM

Fig. 16 is the convergence plots for these complex interface problems. The parameter e� = 2, e+ = 80. We
vary N from 20 to 120. The log–log plots (with base 10) of N versus iu � uei1 are provided. We use least
square fit to find the orders of convergence. We observe that the convergence is about second order. The oscil-
lation behavior reflects the variation of numbers of exceptional points as we vary N. All but the eight-ball case
have small variation. This is consistent to the study of number of exceptional points is O(1) in Fig. 15. For the
eight-ball simulation, it has no exceptional points for most N. We see a nice second-order least square fit for
these test cases. There are few cases the errors increase. This is due to too many balls inside and not enough
resolution. Even in this case, the hybrid CIM does improve CIM1.
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Fig. 15. Number of exceptional points for three-dimensional complex interface problems. The number of grid points ranging from 203 to
5003. The total number of exceptional points is less than 200 for most cases: (a) 8 balls, (b) ellipsoid, (c) donuts, (d) peanut, (e) banana and
(f) popcorn.
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Fig. 16. This is the log–log plot of N versus the absolute errors. The top straight line is the least square fit of the error from CIM1. The
bottom straight line is the least square fit of the error from the hybrid CIM. The x-axis is log10(N) with N ranging from 20 to 120; the y-axis
is log10(ju � uej) with range ½�4;�1�. The hybrid CIM is about second order: (a) 8 balls, (b) ellipsoid, (c) donuts, (d) peanut, (e) banana
and (f) popcorn.
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5.5.3. A comparison study with FIIM

In the paper of FIIM [28], a complex flower-like interface was proposed as a prototype to study unstable
interface problems. The interface is defined by
/ðr; hÞ ¼ r � r0 � 0:2 sinðxhÞ;
where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xcÞ2 þ ðy � ycÞ

2
q

, h = arctan ((y � yc)/ (x � xc)), and xc ¼ yc ¼ 0:2=
ffiffiffiffiffi
20
p

. We consider two

cases: case (a), r0 = 0.5, x = 5, case (b), r0 = 0.4, x = 12, see Fig. 17. The coefficients is given by
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The resulting linear systems is solved by an AMG iterator with reduction rates 0.1–0.7 in each V-cycle. The
computational cost is slightly above linear. Numerical results show that the CIM can handle complex interface
problems in any dimensions.
Appendix A

A.1. Cancellation in the ghost fluid method

In the ghost fluid method (GFM) [36], a term [eut]/h is neglected. We expect that it should produce an
O(1/h) truncation error and result in non-convergence. However, there is a convergence proof for GFM by
Liu and Sideris [37]. Below, we construct an example to show the O(1/h) truncation does appear. However,
a cancellation from opposite signs of the truncation errors causes convergence.

The domain is chosen to be ½�1; 1� � ½0; 2�. The interface C is a straight line given by
−2.

−2.

−2.

−

−1.

−1.

−1.

−1.

−

−0.

−0

lo
g(

|u
−u

e
|)

Fig. 19
error)
and (c
/ðx; yÞ ¼ x cos hþ y sin h ¼ 0:
The source function is chosen to be f ” 0. The coefficient e(Æ) is
eðx; yÞ ¼
e�; ðx; yÞ 2 X�;

eþ; ðx; yÞ 2 Xþ;

�

with e� = 2 and e+ = 80. We shall construct an exact solution u such that it is linear on both sides of the inter-
face with [u] = [eun] = 0, but [eut] = e+ � e� 6¼ 0. Such a u is given by
uðx; yÞ ¼
n=e� þ g ðx; yÞ 2 X�;

n=eþ þ g ðx; yÞ 2 Xþ;

�

where n = xcosh + y sinh, g = �x sinh + ycosh.

We choose small h = 0.01745 so that the interface C does not intersect any vertical grid line before N � 60.
In this case, the truncation error (the residue) is O(1/h) and the true error looks like O(logh). The method
seems not converge. However, if we further refine the mesh. The interface will eventually intersect vertical grid
lines. At this moment, both the truncation error and the true error shoot up, but an truncation error with
opposite sign is produced at the intersection of the interface with the vertical grid line. This causes an cancel-
lation and this absolute error decreases as mesh is further refined, despite the truncation error is still O(1/h). If
we further refine the mesh, more vertical intersections occur, at which truncation errors with opposite sign are
produced. The cancellation can be seen from the decreasing of the sum of the truncation errors. Thus, this
numerical investigation suggests that the convergence is due to a cancellation (Figs. 19 and 20).
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A.2. Non-singularity of the coupling matrix M

In this subsection, we shall show the coupling matrix M for the CIM2 defined by (40) is invertible, provided
jh < Const. Here, j is the total curvature. The proof for the invertibility of the coupling matrix �M for the
CIM1 is the same. We neglect it. Below, the parameters are defined by (12).

Proposition 1. The diagonal entries mk,k of the matrix M is bounded by 1 and
eþk
e�k

.

Proof. The diagonal entries of M are
mk;k ¼ 1þ 1

2
þ ak

� �
ðbk þ b2

kÞðqþk � q�k Þðtk � ekÞ2

:¼ 1þ ðrk � 1Þðtk � ekÞ2:
By the Lemma below, we get rk is bounded by 1 and
eþk
e�

k
. Using jtk Æ ekj 6 1, we get mk,k is also bounded by 1 and

eþk
e�

k
. h

Lemma 1. Following the definition of the parameters in Section 4, let r be defined by
r ¼ 1þ 1

2
þ a

� �
ðbþ b2Þðqþ � q�Þ:
Then r is a monotonic function in a for 0 6 a 6 1, and r is bounded by e+/e� and 1.

Proof. For simplification of notation below, let us abbreviate ð1
2
þ aÞðbþ b2Þ and ð1

2
þ bÞðaþ a2Þ by A and B,

respectively. We have
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r ¼ 1þ 1

2
þ a

� �
ðbþ b2Þðqþ � q�Þ ¼ ðAþ BÞeþ

Ae� þ Beþ
¼ ð1þ 2abÞeþ

Ae� þ Beþ
:

Recall b = 1 � a. Substituting this into the above formula, then taking the derivative with respect to a, we get
dr
da
¼ 2eþð2aþ 2a2 � 8a3 þ 4a4 þ 3Þðe� � eþÞ

ðAe� þ BeþÞ2
:

The denominator is positive, while the numerator (2a + 2a2 � 8a3 + 4a4 + 3) = 2a(1 � a) + 4a2(1 � a)2 +
3 P 3 for 0 6 a 6 1. Hence the extremal values of r occur when a = 0 and 1, they are e+/e� and 1,
respectively. h

Let us denote detM by D. It is a function of n1; . . . ; nd ; e�1 ; . . . ; e�d ; a1; . . . ; ad where nk is the normal of the
interface C at the intersection point bxk. We shall use perturbation method to find a lower bound of D. First, we
study the flat case:
n1 ¼ � � � ¼ nd ¼ n; e�1 ¼ � � � ¼ e�d ¼ e�; eþ1 ¼ � � � ¼ eþd ¼ eþ: ð43Þ
Under this flat assumption, the matrix M in three dimension can be expressed as
M ¼
1þ ðr1 � 1Þðn2

2 þ n2
3Þ �ðr1 � 1� l1Þn1n2 �ðr1 � 1� l1Þn1n3

�ðr2 � 1� l2Þn2n1 1þ ðr2 � 1Þðn2
1 þ n2

3Þ �ðr2 � 1� l2Þn2n3

�ðr3 � 1� l3Þn3n1 �ðr3 � 1� l3Þn3n2 1þ ðr3 � 1Þðn2
2 þ n2

3Þ

264
375;
where n ¼ ðn1; n2; n3Þ; lj ¼ ajðbj þ b2
j Þðqþj � q�j Þ; j ¼ 1; 2; 3.

Theorem 1. Under the flat assumption (43),
D P min 1;
eþ

e�

� �d�1
( )

:

Proof. There are two cases:

Case 1: e� 6 e+. In this case, from the definitions of lj, rj and (12), it is easy to see that rj P 1 and
0 6 lj 6 rj � 1; j ¼ 1; 2; 3. We differentiate D in l1 to get
oD
ol1

¼ ð1þ ð1� n2
3Þl3Þðr2 � 1� l2Þn2

2 þ ð1þ ð1� n2
2Þl2Þðr3 � 1� l3Þn2

3 þ ðn2
2 þ n2

3Þðr2 � 1� l2Þ

� ðr3 � 1� l3Þ;P 0
for l1 satisfying 0 6 l1 6 r1 � 1. Similarly, we can get oD/olj P 0 for 0 6 lj 6 rj � 1.
Case 2: e� > e+. In this case, we have 0 < rj < 1 and rj � 1 < lj < 0. And we can get
oD
ol1

¼ n2
2r3ðr2 � 1� l2Þ þ n2

3r2ðr3 � 1� l3Þ � n2
2n2

3l2ðr3 � 1� l3Þ � n2
2n2

3l3ðr2 � 1� l2Þ < 0:
Similarly, we also get oD/olj < 0 for rj � 1 < lj < 0.
With this monotonicity property of D, we obtain
Dðl1; l2; l3ÞP Dð0; l2; l3ÞP Dð0; 0; l3ÞP Dð0; 0; 0Þ ¼ r2r3n2
1 þ r1r3n2

2 þ r1r2n2
3:
The last equality is obtained by directly calculation. By Proposition 1, for each k,rk P min{1, e+/e�}. Under
the constraint ini2 = 1, we obtain
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r2r3n2
1 þ r1r3n2

2 þ r1r2n2
3 P min 1;

eþ

e�

� �2
( )

: �
Theorem 2. At a normal on-front grid point x, the determinant D of the matrix M satisfies
D P min 1;
eþ

e�

� �d�1
( )

� Cðkrnk1;x þ kre�k1;xÞh;
where n is the normal of the interface C, and C is a positive constant. The notation iÆi1,x denotes for taking max-

imal values on the interface C near the on-front grid point x.

Proof. The function D is a smooth function of n1; . . . ; nd ; e�1 ; . . . ; e�d . Using first variation of D in a neighbor-
hood of n1 ¼ � � � ¼ nd ¼ n; e�1 ¼ � � � ¼ e�d ¼ e�; eþ1 ¼ � � � ¼ eþd ¼ eþ, we obtain our theorem. h
A.3. Pseudocode

Algorithm 5. First-order coupling interface method (CIM1) in d dimensions

1: procedure CIM1 (xi,h)
2: for s = �1, 1
3: for k = 1 : d

4: ð�Dkui; x̂k; �q�k ;�ek; bk; ckÞ  1stDerivativeðxi; hek; sÞ
5: if ck = 1 then

6: nk the unit normal vector to interface at x̂k

7: tk the unit tangential vector(the projection of the Euclidean unit vector onto nk).
8: ð½u�x̂k

; ½eru � nk�x̂k
; ½ru � tk�x̂k

Þ  the jump data locate at x̂k from xi side to the other side

9: �Jk  � sqþk ½u�x̂k
þ bkh

½eru�nk �x̂k
�ek

ðnk � ekÞ þ qþk ½ru � tk�x̂k
ðtk � ekÞ

� �� �
10: �T k  
11: else

12: nk  ek; tk  0; �Jk  0; �T k  0
13: end if

14: bk ¼ �bkðqþk � q�k Þ
15: end for

16: for k = 1 : d do
17: for ‘ = 1 : d do

18: if k = ‘ then

19: ð �MÞk;‘  1� ckbkðtk � ekÞ2 . �M is a d · d matrix.
20: else

21: ð �MÞk;‘  �ckcjbkðtk � ekÞðtk � ejÞ
22: end if

23: end for

24: �vk  1
h ð�Dkui þ bk �T kuiðtk � ekÞ þ �JkÞ .�v is a d · 1 vector.

25: end for

26: ½ o
ox1

uðxþ 1
2 she1Þ; o

ox2
uðxþ 1

2 she2Þ; . . . ; o
oxd

uðxþ 1
2 shedÞ�T ¼ �M�1�v

27: end for

28: �r � ðeðxÞruðxÞÞ ¼ �
Pd

k¼1eðxÞð o
oxk

uðxþ 1
2 hekÞ � o

oxk
uðx� 1

2 hekÞÞ
29: end procedure
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Algorithm 6. Second-order coupling interface method (CIM2) in d dimensions

1: procedure CIM2 ðxi; hÞ
2: for k = 1 : d do

3: ðLðsÞk ui; x̂k; q�k ; êk; bk; skÞ  2ndDerivativeðxi; hekÞ
4: if sk 6¼ 0 then

5: nk the unit normal vector to interface at x̂k

6: tk the unit tangential vector (the projection of the Euclidean unit vector onto nk).
7: ð½u�x̂k

; ½eru � nk�x̂k
; ½ru � tk�x̂k

Þ  the jump data locate at x̂k from xi side to the other side

8: Jk  �ðð1þ 2bkÞqþk ½u�x̂k
þ skðbk þ b2

kÞhð
½eru�nk �x̂k

êk
ðnk � ekÞ þ qþk ½ru � tk�x̂k

ðtk � ekÞÞÞ
9: else

10: nk ek,tk 0, Jk 0
11: end if

12: bk ¼ �ðbk þ b2
kÞðqþk � q�k Þ

13: end for
14: for k = 1 : d do

15: for ‘ = 1 : d do

16: if k = ‘ then

17: ðMÞk;‘  1� jskjð32� bkÞbkðtk � ekÞ2 .M is a d · d matrix.
18: else

19: ðMÞk;‘  � 1
2 sksjbkðtk � ekÞðtk � ejÞ

20: end if

21: end for
22: vk  1

h2 ðLkuðxÞ þ skbkT kuiðtk � ekÞ þ JkÞ .v is a d · 1 vector.
23: end for

24: o2

ox2
1

uðxÞ; o2

ox2
2

uðxÞ; . . . ; o2

ox2
d
uðxÞ

h iT
¼ M�1v

25: �r � ðeðxÞruðxÞÞ ¼ �
Pd

k¼1
1
h2 ðDðskÞeðxÞDðskÞuðxÞÞ þ eðxÞ o2

ox2
k
uðxÞ

26: end procedure
Algorithm 7. Grid labeling

Require: Computational Domain D, levelset function /, the dielectric function e+ and e�, x 2 Rp

1: function G = GRIDLABELING (/, e+, e�)
2: for all x 2 D do

3: if /(x) > � then

4: G(x) 1
5: else if /(x) < �� then

6: G(x) 0
7: else

8: t 0
9: for j = 1 : p do
10: if /(x ± hej) > � then

11: G(x) 1, t 1, exit for
12: else if /(x ± hej) < � � then

13: G(x) 0, t 1, exit for
14: end if

15: end for

16: if t = 0 then

Line missing
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17: if e+(x) > e�(x) then

18: G(x) 1
19: else
20: G(x) 0
21: end if
22: end if
23: end if
24: end for
25: end function

Algorithm 8. Classification of all points

Require: Computational Domain D, Grid labeling G, x 2 Rp

1: function CL = CLASSFICATION(G)
2: for all x 2 D do

3: n 0
4: for j ¼ 1 : p; s ¼ �1; 1 do

5: if G(x) 6¼ G(x + shej) then
6: n 1, exit for
7: end if

8: end for

9: if n = 0 then . Interior points
10: CL(x) 0, exit for
11: end if

12: CL(x) 2
13: for j = 1 : p do . For first kind of exceptional points
14: if G(x) 6¼ G(x + hej) and G(x) 6¼ G(x � hej) then

15: CL(x) 1, exit for
16: end if

17: if G(x) 6¼ G(x + hej) and G(x) = G(x + 2hej) then

18: CL(x) 1, exit for
19: end if

20: if G(x) 6¼ G(x � hej) and G(x) = G(x � 2hej) then

21: CL(x) 1, exit for
22: end if

23: end for

24: for j ¼ 1 : p; s ¼ �1; 1 do . For second kind of exceptional points
25: if G(x) 6¼ G(x + shej) then

26: for k ¼ 1 : p; k 6¼ j; t ¼ �1; 1 do

27: if G(x + t hek) 6¼ G(x) and G(x � t hek � shej) 6¼ G(x) then

28: CL(x) 1
29: end if
30: end for

31: end if

32: end for

33: end for

34: end function
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